Risk prediction of interest rate futures based on machine learning scenarios

Author:

Chen Rui,Gu Xinrui,Li Peiling,Tan Kexin

Abstract

The interest rate futures market is a significant part of the financial market. It has a crucial impact on forecast the interest rate risk in global financial markets, which due to the complexity of financial markets and the volatility of interest rate futures. Based on machine learning scenarios to analyse and compare different algorithms, this paper analyses and forecast 2-year Treasury futures for the period 2022.6-2023.6 through regressions and other methods. Meanwhile, it is applied to construct charts and graphs to better compare and analyse models that are more suitable for forecasting future risk in interest rate futures. National policies, the volatility of the general market environment and its smoothness are utilized as the main factors to forecast its risk fluctuations. The main algorithms this paper use are: random forest regression, ARIMA model, BP Neural Network regression model, ARCH model (model validity test), GARCH model. In conclusion, though the predicted results of the random forest and ARIMA models exhibit a close to 0 and have strong stability, the predicted results of the GARCH are relatively better, none of them achieve the desired prediction performance.

Publisher

EDP Sciences

Reference13 articles.

1. Ren G., Research on bond default risk prediction based on machine learning, Dissertation of Southwest University of Finance and Economics, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3