Vehicle Classification Using Digital Image Processing Based on Convolutional Neural Network for The Electronic Ticketing System in Indonesia

Author:

Fasya Rahim Namira,Syalomta Nathaniel,Usman Koredianto,Caecar Pratiwi Nor Kumalasari

Abstract

Traffic violations can lead to traffic congestion or even collisions. However, Indonesia’s traffic fining system is still incompatible because officers often take illegal levies. In the development of modern society, a system that can support electronic based to facilitate the community’s needs in the field of transportation, especially in the identification and classification system of vehicle types, is needed. Therefore, this study proposed a system that can classify vehicle types into four classes: motorcycles, cars, trucks, and buses using a Convolutional Neural Network (CNN) method for feature extraction and classification with a self-constructed architecture named NN-Net that consist of three hidden layers and AlexNet architecture which has eight hidden layers. The design model uses various input image sizes, optimizers, and learning rates to get the best model. We achieved an accuracy of 99,14% using the AlexNet architecture with an optimum hyperparameter combination model. Based on our results, the proposed system can be helpful to solve Indonesia’s ticketing system problem.

Publisher

EDP Sciences

Reference13 articles.

1. P S.. Yogo, Interviewee, Kabar Baik! Terapkan Tilang ETLE, Polda Metro Jaya Berhasil Turunkan Angka Pelanggaran Lalu Lintas. [Interview]. 26 March 2021.

2. KLASIFIKASI JENIS KENDARAAN MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)

3. Fiolita D., Identifikasi Jenis Mobil Berdasarkan Bentuk Dengan Menggunakan Motode Convolutional Neural Network (CNN), Medan: Universitas Sumetra Utara, 2020.

4. Awangga R. M. and Batubara N. A., Tutorial Object Detection Plate Number With Convolutional Neural Network (CNN), Bandung: Telkom University, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3