Random forest classification algorithm for medical industry data

Author:

Vlachas Christodoulos,Damianos Lazaros,Gousetis Nikolaos,Mouratidis Ioannis,Kelepouris Dimitrios,Kollias Konstantinos-Filippos,Asimopoulos Nikolaos,Fragulis George F

Abstract

Medical industry produces a significant portion of data whereas by adopting various Machine Learning models it can make accurate predictions about public healthcare that can be generalised. Transfer learning improves traditional machine learning by transferring the knowledge learned in one or more tasks and by using it for learning improvement in a related target task. In the current study, transfer learning with random forests was applied. Four datasets of medical interest obtained from the University of California, Irvine (UCI) Machine Learning Repository were used i.e., the BUPA-Liver Disease Dataset, the Breast Cancer Wisconsin Dataset, the Cleveland Heart Disease Dataset, and the Pima Indians Diabetes dataset. To our knowledge, there has been no study that applied Random Forests and Transfer Learning for these datasets. According to our results, our proposed method could provide significant accuracy rates in terms of diagnosing these disorders. Specifically, the classification accuracy of each dataset was similar or higher compared to the majority of similar studies that applied Random Forests. Limitations and suggestions regarding future research are also presented.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liver Disease Prediction Using Different Machine Learning Algorithms;2023 International Conference on Advanced & Global Engineering Challenges (AGEC);2023-06-23

2. Machine learning methods for autism spectrum disorder classification;ETLTC-ICETM2023 INTERNATIONAL CONFERENCE PROCEEDINGS: ICT Integration in Technical Education & Entertainment Technologies and Management;2023

3. Simplified face image generation and aging with conditional generative adversarial networks;ETLTC-ICETM2023 INTERNATIONAL CONFERENCE PROCEEDINGS: ICT Integration in Technical Education & Entertainment Technologies and Management;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3