Linear programming with a feasible direction interior point technique for smooth optimization

Author:

Victorio Celis Angélica MiluzcaORCID,Norman José Herskovits

Abstract

We propose an adaptation of the Feasible Direction Interior Points Algorithm (FDIPA) of J. Herskovits, for solving large-scale linear programs. At each step, the solution of two linear systems with the same coefficient matrix is determined. This step involves a significant computational effort. Reducing the solution time of linear systems is, therefore, a way to improve the performance of the method. The linear systems to be solved are associated with definite positive symmetric matrices. Therefore, we use Split Preconditioned Conjugate Gradient (SPCG) method to solve them, together with an Incomplete Cholesky preconditioner using Matlab’s ICHOL function. We also propose to use the first iteration of the conjugate gradient, and to presolve before applying the algorithm, in order to reduce the computational cost. Following, we then provide mathematica proof that show that the iterations approach Karush–Kuhn–Tucker points of the problem under reasonable assumptions. Finally, numerical evidence show that the method not only works in theory but is also competitive with more advanced methods.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Coordenação de Projetos, Pesquisas e Estudos Tecnológicos

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Reference28 articles.

1. Dantzig G.B., Maximization of a Linear Function of Variables Subject to Linear Inequalities. New York (1951).

2. Dantzig G.B., Linear Programming and Extensions. Princeton University (1963).

3. Neumann J.V., On a Maximization Problem. Manuscript. Institute for Advanced Studies, Princeton University, Princeton, NJ (1947).

4. Computational Experience in Solving Linear Programs

5. Karmarkar N., A new polynomial-time algorithm for linear programming, in Proceedings of the Sixteenth Annual ACM Symposium on Theory of Computing, ACM (1984) 302–311.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3