Spectra of closeness Laplacian and closeness signless Laplacian of graphs

Author:

Zheng Lu,Zhou Bo

Abstract

For a graph G with vertex set V(G) and u, v ∈ V(G), the distance between vertices u and v in G, denoted by dG(u,v), is the length of a shortest path connecting them and it is ∞ if there is no such a path, and the closeness of vertex u in G is cG(u) = ∑wV(G)2-dG(u,w). Given a graph G that is not necessarily connected, for u, vV(G), the closeness matrix of G is the matrix whose (u,v)-entry is equal to 2-dG(u,v) if uv and 0 otherwise, the closeness Laplacian is the matrix whose (u,v)-entry is equal to $$ \left\{\begin{array}{c}-{2}^{-{d}_G(u,v)}\hspace{1em}\mathrm{if}\enspace u\ne v,\enspace \\ \enspace {c}_G(u)\hspace{1em}\hspace{1em}\mathrm{otherwise}\hspace{0.5em}\end{array}\right.\hspace{0.5em} $$ and the closeness signless Laplacian is the matrix whose (u,v)-entry is equal to $$ \left\{\begin{array}{c}{2}^{-{d}_G(u,v)}\hspace{1em}\hspace{1em}\&\mathrm{if}\enspace \mathrm{u}\ne \mathrm{v},\\ {c}_G(u)\hspace{1em}\hspace{1em}\mathrm{otherwise}.\end{array}\right. $$ We establish relations connecting the spectral properties of closeness Laplacian and closeness signless Laplacian and the structural properties of graphs. We give tight upper bounds for all nontrivial closeness Laplacian eigenvalues and characterize the extremal graphs, and determine all trees and unicyclic graphs that maximize the second smallest closeness Laplacian eigenvalue. Also, we give tight upper bounds for the closeness signless Laplacian eigenvalues and determine the trees whose largest closeness signless Laplacian eigenvalues achieve the first two largest values.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3