Application of the “descent with mutations” metaheuristic to a clique partitioning problem

Author:

Hudry Olivier

Abstract

We study here the application of the “descent with mutations” metaheuristic to a problem arising from the field of classification and cluster analysis (dealing more precisely with the aggregation of symmetric relations) and which can be represented as a clique partitioning of a weighted graph. In this problem, we deai with a complete undirected graphe G; the edges of G have weights which can be positive, negative or equal to 0; the aim is to partition the vertices of G into disjoint cliques (whose number depends on G in order to minimize the sum of the weights of the edges with their two extremities in a same clique; this problem is NP-hard. The “descent with mutations” is a local search metaheuristic, of which the design is very simple and is based on local transformation. It consists in randomly performing random elementary transformations, irrespective improvement or worsening with respect to the objective function. We compare it with another very efficient metaheuristic, which is a simulated annealing method improved by the addition of some ingredients coming from the noising methods. Experiments show that the descent with mutations is at least as efficient for the studied problem as this improved simulated annealing, usually a little better, while it is much easier to design and to tune.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3