Facet-inducing inequalities with acyclic supports for the caterpillar-packing polytope

Author:

Marenco JavierORCID

Abstract

A caterpillar is a connected graph such that the removal of all its vertices with degree 1 results in a path. Given a graph G, a caterpillar-packing of G is a set of vertex-disjoint (not necessarily induced) subgraphs of G such that each subgraph is a caterpillar. In this work we consider the set of caterpillar-packings of a graph, which corresponds to feasible solutions of the 2-schemes strip cutting problem with a sequencing constraint (2-SSCPsc) presented by Rinaldi and Franz (Eur. J. Oper. Res. 183 (2007) 1371–1384). Facet-preserving procedures have been shown to be quite effective at explaining the facet-inducing inequalities of the associated polytope, so in this work we continue this issue by exploring such procedures for valid inequalities with acyclic supports. In particular, the obtained results are applicable when the underlying graph is a tree.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Reference17 articles.

1. The Capacitatedm-Ring-Star Problem

2. An efficient evolutionary algorithm for the ring star problem

3. Dias T., de Sousa G., Macambira E., Cabral L. and Fampa M., An efficient heuristic for the ring star problem. In: Proceedings of the 5th International Workshop on Experimental Algorithms WEA 2006, Menorca, Spain. In Vol. 4007 of Lect. Note Comput. Sci. (2006) 24–35.

4. Dinneen M. and Khosravani M., A linear time algorithm for the minimum spanning caterpillar problem for bounded treewidth graphs. In: Proceedings of the 17th International Colloquium on Structural Information and Communication Complexity, Sirince. In Vol. 6058 of Lect. Notes Comput. Sci. 237–246 (2010).

5. Dinneen M. and Khosravani M., Hardness of approximation and integer programming frameworks for searching for caterpillar trees. In: Proceedings of the Seventeenth Computing on The Australasian Theory Symposium, Perth, Australia (2011) 145–150.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3