Surface roughness prediction of FFF-fabricated workpieces by artificial neural network and Box–Behnken method

Author:

Kandananond KarinORCID

Abstract

Fused Filament Fabrication (FFF) or Fused Deposition Modelling (FDM) or three-dimension (3D) printing are rapid prototyping processes for workpieces. There are many factors which have a significant effect on surface quality, including bed temperature, printing speed, and layer thickness. This empirical study was conducted to determine the relationship between the above-mentioned factors and average surface roughness (Ra). Workpieces of cylindrical shape were fabricated by an FFF system with a Polylactic acid (PLA) filament. The surface roughness was measured at five different positions on the bottom and top surface. A response surface (Box-Behnken) method was utilised to design the experiment and statistically predict the response. The total number of treatments was sixteen, while five measurements (Ra1, Ra2, Ra3, Ra4 and Ra5) were carried out for each treatment. The settings of each factor were as follows: bed temperature (80, 85, and 90 °C), printing speed (40, 80 and 120 mm/s), and layer thickness (0.10, 0.25 and 0.40 mm). The prediction equation of surface roughness was then derived from the analysis. The same set of data was also used as the inputs for a machine learning method, an artificial neural network (ANN), to construct the prediction equation of surface roughness. Rectified linear unit (ReLU) was utilised as the activation function of ANN. Two training algorithms (resilient backpropagation with weight backtracking and globally convergent resilient backpropagation) were applied to train multi-layer perceptrons. Moreover, the different number of neurons in each hidden layer was also studied and compared. Another interesting aspect of this study is that the ANN was based on a limited number of training samples. Finally, the prediction errors of each method were compared, to benchmark the prediction performance of the two methods: Box-Behnken and ANN.

Publisher

EDP Sciences

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3