Research on online monitoring and cause identification system of building electrical fire

Author:

Yang Fan,Cai ZhuoyuanORCID,Su Lei,Xue Yongduan,Chen Xiaoming,Shen Yu,Wang Junjie

Abstract

Frequent building electrical fire accidents have brought great harm to life and property. In order to prevent the occurrence of accidents and reduce the losses to the greatest extent, it is necessary to take effective measures for building electrical fires. Based on the Internet of things (IoT) technology, a system for online monitoring and cause identification of building electrical fire is proposed in this paper. For both hardware and software, this paper introduces the overall structure, component units and system functions in detail. According to the characteristics of arc fault and fire, the complete scheme of online monitoring is given, and the system workflow is also described to realize the cause identification. Finally, the effectiveness of this system is verified by practical testing. The results show that the proposed system is helpful to solve the problems in monitoring and cause identification of building electrical fire, which can not only provide decision-making basis for firefighting, but also provide strong technical support for improving the safety of low-voltage power grid.

Funder

National Natural Science Foundation of China

Science and Technology Project of State Grid

Publisher

EDP Sciences

Subject

Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3