Research on the enhancement of machine fault evaluation model based on data-driven

Author:

Cui Peng,Luo Xuan,Li Xiaobang,Luo Xinyu

Abstract

Recently fault data diagnosis-based deep learning methods have achieved promising results. However, most of these methods' performances are difficult to improve once they have achieved accuracy. This paper mainly uses fusion theory based on data-driven to solve this problem. Firstly, the diagnostic models are divided into feature extraction and neural network. Then, four feature extraction methods are fused by pre-allocation. The neural network part consists of three single models, and the weight of the three output results is determined by regression analysis. Experiments show that the accuracy of diagnostic models is improved. Finally, we combine the two studies and propose a Fusion-Ensemble superposition (FES) model. The AUC value of the model is higher than 98% in most tasks of the DCASE2020 machine failure dataset.

Publisher

EDP Sciences

Subject

Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3