Series arc fault identification based on complete ensemble empirical mode decomposition with adaptive noise and convolutional neural network

Author:

Shang TongtongORCID,Wang WeiORCID,Peng Jigang,Xu Bingyin,Gao Haiyang,Zhai Guoliang

Abstract

The effective identification of series arc faults is of considerable significance for preventing fires in residential buildings. Series arc fault currents and load currents have a similar waveform, and the fault features and nonfault features are superimposed on the current signal. Fault features are deeply hidden, making it difficult to identify them. This work proposes a method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) preprocessing and a one-dimensional convolutional neural network (1DCNN). The CEEMDAN algorithm is used to decompose the collected current signals. Then, the intrinsic mode function (IMF) components with no representational significance are eliminated by calculating the Spearman correlation coefficient before inputting it into the 1DCNN. The experimental results showed that the accuracy of the method for the measured load is 99.3%. Compared with the method that directly uses original current signals as model inputs, the recognition accuracy of the algorithm was significantly improved. Therefore, the proposed algorithm can be used for series arc fault identification in residential building power distribution systems.

Funder

National Science Foundation of China

Publisher

EDP Sciences

Subject

Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3