On a quarantine model of coronavirus infection and data analysis

Author:

Volpert Vitaly,Banerjee Malay,Petrovskii Sergei

Abstract

Attempts to curb the spread of coronavirus by introducing strict quarantine measures apparently have different effect in different countries: while the number of new cases has reportedly decreased in China and South Korea, it still exhibit significant growth in Italy and other countries across Europe. In this brief note, we endeavour to assess the efficiency of quarantine measures by means of mathematical modelling. Instead of the classical SIR model, we introduce a new model of infection progression under the assumption that all infected individual are isolated after the incubation period in such a way that they cannot infect other people. Disease progression in this model is determined by the basic reproduction numberR0(the number of newly infected individuals during the incubation period), which is different compared to that for the standard SIR model. IfR0> 1, then the number of latently infected individuals exponentially grows. However, ifR0< 1 (e.g.due to quarantine measures and contact restrictions imposed by public authorities), then the number of infected decays exponentially. We then consider the available data on the disease development in different countries to show that there are three possible patterns: growth dynamics, growth-decays dynamics, and patchy dynamics (growth-decay-growth). Analysis of the data in China and Korea shows that the peak of infection (maximum of daily cases) is reached about 10 days after the restricting measures are introduced. During this period of time, the growth rate of the total number of infected was gradually decreasing. However, the growth rate remains exponential in Italy. Arguably, it suggests that the introduced quarantine is not sufficient and stricter measures are needed.

Publisher

EDP Sciences

Subject

Modelling and Simulation,Applied Mathematics

Reference2 articles.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3