On numerical approximation of Atangana-Baleanu-Caputo fractional integro-differential equations under uncertainty in Hilbert Space

Author:

Al-Smadi MohammedORCID,Dutta HemenORCID,Hasan Shatha,Momani Shaher

Abstract

Many dynamic systems can be modeled by fractional differential equations in which some external parameters occur under uncertainty. Although these parameters increase the complexity, they present more acceptable solutions. With the aid of Atangana-Baleanu-Caputo (ABC) fractional differential operator, an advanced numerical-analysis approach is considered and applied in this work to deal with different classes of fuzzy integrodifferential equations of fractional order fitted with uncertain constraints conditions. The fractional derivative of ABC is adopted under the generalized H-differentiability (g-HD) framework, which uses the Mittag-Leffler function as a nonlocal kernel to better describe the timescale of the fuzzy models. Towards this end, applications of reproducing kernel algorithm are extended to solve classes of linear and nonlinear fuzzy fractional ABC Volterra-Fredholm integrodifferential equations. Based on the characterization theorem, preconditions are established under the Lipschitz condition to characterize the fuzzy solution in a coupled equivalent system of crisp ABC integrodifferential equations. Parametric solutions of the ABC interval are provided in terms of rapidly convergent series in Sobolev spaces. Several examples of fuzzy ABC Volterra-Fredholm models are implemented in light of g-HD to demonstrate the feasibility and efficiency of the designed algorithm. Numerical and graphical representations of both classical Caputo and ABC fractional derivatives are presented to show the effect of the ABC derivative on the parametric solutions of the posed models. The achieved results reveal that the proposed method is systematic and suitable for dealing with the fuzzy fractional problems arising in physics, technology, and engineering in terms of the ABC fractional derivative.

Publisher

EDP Sciences

Subject

Modelling and Simulation,Applied Mathematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3