Modelling of hillslope storage under temporally varied rainfall recharge

Author:

Hsieh Ping-ChengORCID,Huang Tzu-Ting

Abstract

Water storage inside hillslopes is a crucial issue of environment and water resources. This study separately built a numerical model and an analytical model employing a hillslope-storage equation to simulate the water storage in a sloping aquifer response to recharge. The variable width of hillslope was hypothetically represented by an exponential function to categorize the hillslope into three types: uniform, convergent, and divergent. An integral transform technique was introduced to derive the analytical solution whereas a finite difference method was employed for the numerical modelling. As a result, under the same scenario a gap existed between the two solutions to distinct forms of the water storage equation, and the gap decreases with a falling recharge rate for convergent hillslopes. Moreover, all outflows gradually approached one value based on different hillslopes under the same accumulative recharge amount for six typical rainfall recharge patterns. Particularly, while the recharge stops, the outflow decreases and then mildly rises for a long time for convergent hillslope because of the slow water release near the upstream boundary where the storage water is relatively abundant due to the widest width.

Funder

Ministry of Science and Technology, Taiwan

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3