Heterogeneous social interactions and the COVID-19 lockdown outcome in a multi-group SEIR model

Author:

Dolbeault JeanORCID,Turinici GabrielORCID

Abstract

We study variants of the SEIR model for interpreting some qualitative features of the statistics of the Covid-19 epidemic in France. Standard SEIR models distinguish essentially two regimes: either the disease is controlled and the number of infected people rapidly decreases, or the disease spreads and contaminates a significant fraction of the population until herd immunity is achieved. After lockdown, at first sight it seems that social distancing is not enough to control the outbreak. We discuss here a possible explanation, namely that the lockdown is creating social heterogeneity: even if a large majority of the population complies with the lockdown rules, a small fraction of the population still has to maintain a normal or high level of social interactions, such as health workers, providers of essential services, etc. This results in an apparent high level of epidemic propagation as measured through re-estimations of the basic reproduction ratio. However, these measures are limited to averages, while variance inside the population plays an essential role on the peak and the size of the epidemic outbreak and tends to lower these two indicators. We provide theoretical and numerical results to sustain such a view.

Funder

Agence Nationale de la Recherche

Publisher

EDP Sciences

Subject

Modelling and Simulation,Applied Mathematics

Reference45 articles.

1. Adam D., Wu P., Wong J., Lau E., Tsang T., Cauchemez S., Leung G. and Cowling B., Clustering and superspreading potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong. To appear in Res. Square (2020). DOI: 10.21203/rs.3.rs-29548/v1.

2. The effects of averaging on the basic reproduction ratio

3. Althouse B.M. et al., Stochasticity and heterogeneity in the transmission dynamics of SARS-CoV-2. Available from: https://covid.idmod.org/ (2020).

4. Anderson R.M., Anderson B. and May R.M., Infectious diseases of humans: dynamics and control, Oxford University Press, Oxford (1992).

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3