Gas effect for oblique and conical shock waves at high temperature

Author:

Yahiaoui Toufik,Zebbiche Toufik,Allali Abderrazak,Boun-jad Mohamed

Abstract

The work focuses to develop a new numerical calculation program for determining the gas effect at high temperature instead air on the calculation of the oblique and conical shock waves parameters and make applications for various external and internal aerodynamics problems like, the calculation of the suitable intake adaptation parameters, dihedron and cone wave drag, aerodynamic coefficients of a pointed supersonic airfoil and oblique shock reflection without forgetting others no less important like the detonation propulsion and the dust explosion applications, where the high temperature gas effect is very important. All this for future aerodynamics (gas dynamics) like the phenomenon of climate change in the near and far future because of the enlargement progressive of the layer ozone hole which will lead to an increase in the temperature of the ambient medium, and by the environment pollution by the shining of the waste which will cause a new decomposition of gases from the ambient environment. Another interesting application for actual aerodynamics (gas dynamics) is the performance of tests in wind tunnels supplied by a combustion chamber making a reaction of gases giving a gas with new thermodynamics parameters which is not necessarily air. To make a calculation, the selected gases are H2, O2, N2, CO, CO2, H2O, NH3, CH4 and air. All shock parameters depend on the stagnation temperature, upstream Mach number, the thermodynamics of the used gas, dihedron and cone deviation and others parameters. The specific heat at constant pressure varies with the temperature and the selected gas. Gas is still considered as perfect. It is calorically imperfect, and thermally perfect, less than the molecules dissociation threshold. A comparison between the parameters of each gas and air is presented to choose the suitable gas witch giving good performances as required by design parameters instead air.

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Reference32 articles.

1. Approximation for weak and strong oblique shock wave angles

2. Anderson J.D., Hypersonic and High Temperature Gas Dynamics. McGraw-Hill Book Company, New York (1989).

3. Anderson J., Modern Compressible Flow: With Historical Perspective. McGraw Hill Book Company, New York (1982).

4. Barin I., Sauer F., Schultze R.E. and Sheng W.S., Thermochemical Data on Pure Substances, Pt. 1, VCH Publishers, Wiesbaden, Germany (1989).

5. Gas Effect at High Temperature on the Supersonic Nozzle Conception

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3