S̲tochastic S̲imulation A̲lgorithm For Effective Spreading Dynamics On T̲ime-Evolving A̲daptive N̲etworX̲ (SSATAN-X)

Author:

Malysheva NadezhdaORCID,Wang Junyu,von Kleist MaxORCID

Abstract

Modelling and simulating of pathogen spreading has been proven crucial to inform containment strategies, as well as cost-effectiveness calculations. Pathogen spreading is often modelled as a stochastic process that is driven by pathogen exposure on time-evolving contact networks. In adaptive networks, the spreading process depends not only on the dynamics of a contact network, but vice versa, infection dynamics may alter risk behavior and thus feed back onto contact dynamics, leading to emergent complex dynamics. However, numerically exact stochastic simulation of such processes via the Gillespie algorithm is currently computationally prohibitive. On the other hand, frequently used ‘parallel updating schemes’ may be computationally fast, but can lead to incorrect simulation results. To overcome this computational bottleneck, we propose SSATAN-X. The key idea of this algorithm is to only capture contact dynamics at time-points relevant to the spreading process. We demonstrate that the statistics of the contact- and spreading process are accurate, while achieving ~100 fold speed-up over exact stochastic simulation. SSATAN-X’s performance increases further when contact dynamics are fast in relation to the spreading process, as applicable to most infectious diseases. We envision that SSATAN-X may extend the scope of analysis of pathogen spreading on adaptive networks. Moreover, it may serve to create benchmark data sets to validate novel numerical approaches for simulation, or for the data-driven analysis of the spreading dynamics on adaptive networks.

Funder

Bundesministerium für Bildung und Forschung

Max-Planck-Gesellschaft

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3