Mathematical modelling of proton migration in Earth mantle

Author:

Bobrovskiy VadimORCID,Galvis JuanORCID,Kaplin Alexey,Sinitsyn AlexanderORCID,Tognoli MarcoORCID,Trucco PaoloORCID

Abstract

In the study, we address the mathematical problem of proton migration in the Earth’s mantle and suggest a prototype for exploring the Earth’s interior to map the effects of superionic proton conduction. The problem can be mathematically solved by deriving the self-consistent electromagnetic field potential U(x, t) and then reconstructing the distribution function f(x,v,t). Reducing the Vlasov-Maxwell system of equations to non-linear sh-Gordon hyperbolic and transport equations, the propagation of a non-linear wavefront within the domain and transport of the boundary conditions in the form of a non-linear wave are examined. By computing a 3D model and through Fourier-analysis, the spatial and electrical characteristics of potential U(x, t) are investigated. The numerical results are compared to the Fourier transformed quantities of the potential (V) obtained through field observations of the electric potential (Kuznetsov method). The non-stationary solutions for the forced oscillation of two-component system, and therefore, the oscillatory strengths of two types of charged particles can be usefully addressed by the proposed mathematical model. Moreover, the model, along with data analysis of the electric potential observations and probabilistic seismic hazard maps, can be used to develop an advanced seismic risk metric.

Publisher

EDP Sciences

Subject

Modeling and Simulation,Applied Mathematics

Reference34 articles.

1. Adams R. and Fournier J., Sobolev Spaces, Academic Press, New York (2003).

2. deal.II—A general-purpose object-oriented finite element library

3. Bobrovskiy V., Software and hardware of international spatially distributed monitoring network for investigation local and global effects prior to the strong earthquakes. Ph.D. thesis. Geophysics. (in Russian), Russian State University for Geological Prospecting, Moscow (2016).

4. Bobrovskiy V. and Kuznetsov D., Seismic global conception on the example of strongest earthquakes with M8+ occurred in 2001-2015 (in Russian). Scientific World, Moscow (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3