Mathematical analysis of an age structured epidemic model with a quarantine class

Author:

Sari Zakya,Touaoula Tarik MohammedORCID,Ainseba BedreddineORCID

Abstract

In this paper, an age structured epidemic Susceptible-Infected-Quarantined-Recovered-Infected (SIQRI) model is proposed, where we will focus on the role of individuals that leave the R-class before being completely recovered and thus will participate again to the disease transmission. We investigate the asymptotic behavior of solutions by studying the stability of both trivial and positive equilibria. In order to see the impact of the different model parameters like the relapse rate on the qualitative behavior of our system, we firstly, give an explicit expression of the basic reproduction number R0, which is a combination of the classical basic reproduction number for the SIQR model and some other model parameters, corresponding to the individuals infected by the relapsed ones. It will be shown that, if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable and becomes unstable for R0 > 1. Secondly, while R0 > 1, a suitable Lyapunov functional is constructed to prove that the unique endemic equilibrium is globally asymptotically stable on some subset Ω0.

Publisher

EDP Sciences

Subject

Modelling and Simulation,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3