Author:
Zhang Yu,Fan Shuai,Zhang Yanyan
Abstract
The phenomena of concentration and cavitation are identified and analyzed by studying the vanishing pressure limit of solutions to the 3x3 isentropic compressible Euler equations for generalized Chaplygin gas (GCG) with a small parameter. It is rigorously proved that, any Riemann solution containing two shocks and possibly one-contact-discontinuity of the GCG equations converges to a delta-shock solution of the same system as the parameter decreases to a certain critical value. Moreover, as the parameter goes to zero, that is, the pressure vanishes, the limiting solution is just the delta-shock solution of the pressureless gas dynamics (PGD) model, and the intermediate density between the two shocks tends to a weighted δ-measure that forms the delta shock wave; any Riemann solution containing two rarefaction waves and possibly one contact-discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some numerical results are presented to exhibit the processes of concentration and cavitation as the pressure decreases.
Funder
National Natural Science Foundation of China
Applied Basic Research Foundation of Yunnan Province
Scientific Research Foundation Project of Yunnan Education Department
Subject
Modeling and Simulation,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献