A partitioned numerical scheme for fluid–structure interaction with slip

Author:

Bukač Martina,Čanić SunčicaORCID

Abstract

We present a loosely coupled, partitioned scheme for solving fluid–structure interaction (FSI) problems with the Navier slip boundary condition. The fluid flow is modeled by the Navier–Stokes equations for an incompressible, viscous fluid, interacting with a thin elastic structure modeled by the membrane or Koiter shell type equations. The fluid and structure are coupled via two sets of coupling conditions: a dynamic coupling condition describing balance of forces, and a kinematic coupling condition describing fluid slipping tangentially to the moving fluid–structure interface, with no penetration in the normal direction. Problems of this type arise in, e.g., FSI with hydrophobic structures or surfaces treated with a no-stick coating, and in biologic FSI involving rough surfaces of elastic tissues or tissue scaffolds. We propose a novel, efficient partitioned scheme where the fluid sub-problem is solved separately from the structure sub-problem, and there is no need for sub-iterations at every time step to achieve stability, convergence, and its first-order accuracy. We derive energy estimates, which prove that the proposed scheme is unconditionally stable for the corresponding linear problem. Moreover, we present convergence analysis and show that under a time-step condition, the method is first-order accurate in time and optimally convergent in space for a Finite Element Method-based spatial discretization. The theoretical rates of convergence in time are confirmed numerically on an example with an explicit solution using the method of manufactured solutions, and on a benchmark problem describing propagation of a pressure pulse in a two-dimensional channel. The effects of the slip rate and fluid viscosity on the FSI solution are numerically investigated in two additional examples: a 2D cylindrical FSI example for which an exact Navier slip Poiseuille-type solution is found and used for comparison, and a squeezed ketchup bottle example with gravity enhanced flow. We show that the Navier-slip boundary condition increases the outflow mass flow rate by 21% for a bottle angled at 45 degrees pointing downward, in the direction of gravity.

Funder

National Science Foundation

Publisher

EDP Sciences

Subject

Modelling and Simulation,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3