Abstract
This article deals with a simultaneous abstract evolution equation. This includes a parabolic-hyperbolic phase-field system as an example which consists of a parabolic equation for the relative temperature coupled with a semilinear damped wave equation for the order parameter (see e.g., Grasselli and Pata [Adv. Math. Sci. Appl. 13 (2003) 443–459, Comm. Pure Appl. Anal. 3 (2004) 849–881], Grasselli et al. [Comm. Pure Appl. Anal. 5 (2006) 827–838], Wu et al. [Math. Models Methods Appl. Sci. 17 (2007) 125–153, J. Math. Anal. Appl. 329 (2007) 948–976]). On the other hand, a time discretization of an initial value problem for an abstract evolution equation has been studied (see e.g., Colli and Favini [Int. J. Math. Math. Sci. 19 (1996) 481–494]) and Schimperna [J. Differ. Equ. 164 (2000) 395–430] has established existence of solutions to an abstract problem applying to a nonlinear phase-field system of Caginalp type on a bounded domain by employing a time discretization scheme. In this paper we focus on a time discretization of a simultaneous abstract evolution equation applying to parabolic-hyperbolic phase-field systems. Moreover, we can establish an error estimate for the difference between continuous and discrete solutions.
Funder
Japan Society for the Promotion of Science
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献