Finite element method with local damage of the mesh

Author:

Duprez MichelORCID,Lleras VanessaORCID,Lozinski Alexei

Abstract

We consider the finite element method on locally damaged meshes allowing for some distorted cells which are isolated from one another. In the case of the Poisson equation and piecewise linear Lagrange finite elements, we show that the usual a priori error estimates remain valid on such meshes. We also propose an alternative finite element scheme which is optimally convergent and, moreover, well conditioned, i.e. the conditioning number of the associated finite element matrix is of the same order as that of a standard finite element method on a regular mesh of comparable size.

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Reference22 articles.

1. Anders L., Kent-Andre M. and Wells G.N., Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin, Heidelberg (2012).

2. Apel T., Anisotropic finite elements: Local estimates and applications. Advances in Numerical, edited by Teubner B.G., Stuttgart (1999).

3. On the Angle Condition in the Finite Element Method

4. Sard kernel theorems on triangular domains with application to finite element error bounds

5. On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3