A numerical solution to Monge’s problem with a Finsler distance as cost

Author:

Benamou Jean-David,Carlier Guillaume,Hatchi Roméo

Abstract

Monge’s problem with a Finsler cost is intimately related to an optimal ow problem. Discretization of this problem and its dual leads to a well-posed finite-dimensional saddle-point problem which can be solved numerically relatively easily by an augmented Lagrangian approach in the same spirit as the Benamou–Brenier method for the optimal transport problem with quadratic cost. Numerical results validate the method. We also emphasize that the algorithm only requires elementary operations and in particular never involves evaluation of the Finsler distance or of geodesics.

Publisher

EDP Sciences

Subject

Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Reference18 articles.

1. Ambrosio L., Lecture notes on optimal transport problems. In Mathematical aspects of evolving interfaces Funchal 2000. Vol. 1812 of Lecture Notes in Math. Springer, Berlin (2003) 1–52.

2. A Mixed Formulation of the Monge-Kantorovich Equations

3. A Continuous Model of Transportation

4. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem

5. Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A primal-dual algorithm for computing Finsler distances and applications;Calcolo;2024-08-21

2. A Finsler Geometrical Programming Approach to the Nonlinear Complementarity Problem of Traffic Equilibrium;Journal of Optimization Theory and Applications;2023-02-10

3. A linear finite-difference scheme for approximating randers distances on cartesian grids;ESAIM: Control, Optimisation and Calculus of Variations;2022

4. Beckmann-type problem for degenerate Hamilton-Jacobi equations;Quarterly of Applied Mathematics;2021-12-21

5. Augmented Lagrangian methods for degenerate Hamilton–Jacobi equations;Calculus of Variations and Partial Differential Equations;2021-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3