Discrete duality finite volume method with tangential redistribution of points for surfaces evolving by mean curvature

Author:

Tomek LukášORCID,Mikula Karol

Abstract

We propose a new discrete duality finite volume method for solving mean curvature flow of surfaces in ℝ3. In the cotangent scheme, which is widely used discretization of Laplace–Beltrami operator, a two-dimensional surface is usually approximated by a triangular mesh. In the cotangent scheme the unknowns are the vertices of the triangulation. A finite volume around each vertex is constructed as a surface patch bounded by a piecewise linear curve with nodes in the midpoints of the neighbouring edges and a representative point of each adjacent triangle. The basic idea of our new approach is to include the representative points into the numerical scheme as supplementary unknowns and generalize discrete duality finite volume method from ℝ2 to 2D surfaces embedded in ℝ3. To improve the quality of the mesh we use an area-oriented tangential redistribution of the grid points. We derive the numerical scheme for both closed surfaces and surfaces with boundary, and present numerical experiments. Surface evolution models are applied to construction of minimal surfaces with given set of boundary curves.

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3