Author:
Duan Xiaoqi,Jiang Xue,Zheng Weiying
Abstract
The perfectly matched layer (PML) method is extensively studied for scattering problems in homogeneous background media. However, rigorous studies on the PML method in layered media are very rare in the literature, particularly, for three-dimensional electromagnetic scattering problems. Cartesian PML method is favorable in numerical solutions since it is apt to deal with anisotropic scatterers and to construct finite element meshes. Its theories are more difficult than circular PML method due to anisotropic wave-absorbing materials. This paper presents a systematic study on the Cartesian PML method for three-dimensional electromagnetic scattering problem in a two-layer medium. We prove the well-posedness of the PML truncated problem and that the PML solution converges exponentially to the exact solution as either the material parameter or the thickness of PML increases. To the best of the authors’ knowledge, this is the first theoretical work on Cartesian PML method for Maxwell’s equations in layered media.
Funder
the National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献