Abstract
The global well-posedness in time is proved, with no restriction on the size of the data, for the Stokes/Brinkman and Stokes/Darcy coupled flow problems with new jump interface conditions recently derived by Angot et al. [Phys. Rev. E 95 (2017) 063302-1–063302-16] using asymptotic modelling and shown to be physically relevant. These original conditions include jumps of both stress and tangential velocity vectors at the fluid–porous interface. They can be viewed as generalizations for the multi-dimensional flow of Beavers and Joseph’s jump condition of tangential velocity and Ochoa-Tapia and Whitaker’s jump condition of shear stress. Therefore, they are different from those most commonly used in the literature. The case of Saffman’s approximation is also studied, but with a force balance for the cross-flow including the Darcy drag and inducing a law of pressure jump different from the usual one. The proof of these results follows the general framework briefly introduced by Angot [C. R. Math. Acad. Sci. Paris, Ser. I 348 (2010) 697–702; Appl. Math. Lett. 24 (2011) 803–810.] for the steady flow.
Subject
Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献