Author:
Bauzet Caroline,Charrier Julia,Gallouët Thierry
Abstract
This paper is devoted to the study of finite volume methods for the discretization of scalar conservation laws with a multiplicative stochastic force defined on a bounded domain D of Rd with Dirichlet boundary conditions and a given initial data in L∞(D). We introduce a notion of stochastic entropy process solution which generalizes the concept of weak entropy solution introduced by F.Otto for such kind of hyperbolic bounded value problems in the deterministic case. Using a uniqueness result on this solution, we prove that the numerical solution converges to the unique stochastic entropy weak solution of the continuous problem under a stability condition on the time and space steps.
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献