Analysis and numerical solver for excitatory-inhibitory networks with delay and refractory periods

Author:

Cáceres María J.ORCID,Schneider Ricarda

Abstract

The network of noisy leaky integrate and fire (NNLIF) model is one of the simplest self-contained mean-field models considered to describe the behavior of neural networks. Even so, in studying its mathematical properties some simplifications are required [Cáceres and Perthame, J. Theor. Biol. 350 (2014) 81–89; Cáceres and Schneider, Kinet. Relat. Model. 10 (2017) 587–612; Cáceres, Carrillo and Perthame, J. Math. Neurosci. 1 (2011) 7] which disregard crucial phenomena. In this work we deal with the general NNLIF model without simplifications. It involves a network with two populations (excitatory and inhibitory), with transmission delays between the neurons and where the neurons remain in a refractory state for a certain time. In this paper we study the number of steady states in terms of the model parameters, the long time behaviour via the entropy method and Poincaré’s inequality, blow-up phenomena, and the importance of transmission delays between excitatory neurons to prevent blow-up and to give rise to synchronous solutions. Besides analytical results, we present a numerical solver, based on high order flux-splitting WENO schemes and an explicit third order TVD Runge-Kutta method, in order to describe the wide range of phenomena exhibited by the network: blow-up, asynchronous/synchronous solutions and instability/stability of the steady states. The solver also allows us to observe the time evolution of the firing rates, refractory states and the probability distributions of the excitatory and inhibitory populations.

Funder

Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund

Grant of Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund

Publisher

EDP Sciences

Subject

Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3