Analysis of the 3D non-linear Stokes problem coupled to transport-diffusion for shear-thinning heterogeneous microscale flows, applications to digital rock physics and mucociliary clearance

Author:

Sanchez David,Hume LaurèneORCID,Chatelin Robin,Poncet PhilippeORCID

Abstract

This study provides the analysis of the generalized 3D Stokes problem in a time dependent domain, modeling a solid in motion. The fluid viscosity is a non-linear function of the shear-rate and depends on a transported and diffused quantity. This is a natural model of flow at very low Reynolds numbers, typically at the microscale, involving a miscible, heterogeneous and shear-thinning incompressible fluid filling a complex geometry in motion. This one-way coupling is meaningful when the action produced by a solid in motion has a dominant effect on the fluid. Several mathematical aspects are developed. The penalized version of this problem is introduced, involving the penalization of the solid in a deformable motion but defined in a simple geometry (a periodic domain and/or between planes), which is of crucial interest for many numerical methods. All the equations of this partial differential system are analyzed separately, and then the coupled model is shown to be well-posed and to converge toward the solution of the initial problem. In order to illustrate the pertinence of such models, two meaningful micrometer scale real-life problems are presented: on the one hand, the dynamics of a polymer percolating the pores of a real rock and miscible in water; on the other hand, the dynamics of the strongly heterogeneous mucus bio-film, covering the human lungs surface, propelled by the vibrating ciliated cells. For both these examples the mathematical hypothesis are satisfied.

Funder

Conseil Départemental des Pyrénées-Atlantiques

Institut Carnot ISIFoR

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3