Author:
Boiveau Thomas,Ehrlacher Virginie,Ern Alexandre,Nouy Anthony
Abstract
We devise a space-time tensor method for the low-rank approximation of linear parabolic evolution equations. The proposed method is a Galerkin method, uniformly stable in the discretization parameters, based on a Minimal Residual formulation of the evolution problem in Hilbert–Bochner spaces. The discrete solution is sought in a linear trial space composed of tensors of discrete functions in space and in time and is characterized as the unique minimizer of a discrete functional where the dual norm of the residual is evaluated in a space semi-discrete test space. The resulting global space-time linear system is solved iteratively by a greedy algorithm. Numerical results are presented to illustrate the performance of the proposed method on test cases including non-selfadjoint and time-dependent differential operators in space. The results are also compared to those obtained using a fully discrete Petrov–Galerkin setting to evaluate the dual residual norm.
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献