Study of an asymptotic preserving scheme for the quasi neutral Euler–Boltzmann model in the drift regime

Author:

Badsi Mehdi

Abstract

We deal with the numerical approximation of a simplified quasi neutral plasma model in the drift regime. Specifically, we analyze a finite volume scheme for the quasi neutral Euler–Boltzmann equations. We prove the unconditional stability of the scheme and give some bounds on the numerical approximation that are uniform in the asymptotic parameter. The proof relies on the control of the positivity and the decay of a discrete energy. The severe non linearity of the scheme being the price to pay to get the unconditional stability, to solve it, we propose an iterative linear implicit scheme that reduces to an elliptic system. The elliptic system enjoys a maximum principle that enables to prove the conservation of the positivity under a CFL condition that does not involve the asymptotic parameter. The linear L2 stability analysis of the iterative scheme shows that it does not request the mesh size and time step to be smaller than the asymptotic parameter. Numerical illustrations are given to illustrate the stability and consistency of the scheme in the drift regime as well as its ability to compute correct shock speeds.

Funder

Agence Nationale de la Recherche

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3