Further results on outer independent 2-rainbow dominating functions of graphs

Author:

Samadi BabakORCID,Soltankhah NasrinORCID

Abstract

Let G = (V(G), E(G)) be a graph. A function f : V(G) → ℙ({1, 2}) is a 2-rainbow dominating function if for every vertex v with f(v) = ∅, f(N(v)) = {1, 2}. An outer-independent 2-rainbow dominating function (OI2RD function) of G is a 2-rainbow dominating function f for which the set of all v 2208 V(G) with f(v) = ∅ is independent. The outer independent 2-rainbow domination number (OI2RD number) γoir2(G) is the minimum weight of an OI2RD function of G. In this paper, we first prove that n/2 is a lower bound on the OI2RD number of a connected claw-free graph of order n and characterize all such graphs for which the equality holds, solving an open problem given in an earlier paper. In addition, a study of this parameter for some graph products is carried out. In particular, we give a closed (resp. an exact) formula for the OI2RD number of rooted (resp. corona) product graphs and prove upper bounds on this parameter for the Cartesian product and direct product of two graphs.

Funder

The authors have not disclosed any funding.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Reference14 articles.

1. RAINBOW DOMINATION IN GRAPHS

2. A Note on Outer-Independent 2-Rainbow Domination in Graphs

3. Garey M.R. and Johnson D.S., Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman & Co., New York, USA (1979.

4. A new graph product and its spectrum

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3