Multi-objective optimization for multimodal transportation routing problem with stochastic transportation time based on data-driven approaches

Author:

Peng Yong,Gao Shu Han,Yu DennisORCID,Xiao Yun Peng,Luo Yi Juan

Abstract

We study a multi-objective optimization model of a stochastic multimodal transportation network considering key impact factors such as transit cost, time, and transport mode schedule while minimizing total transportation cost and transportation time. In this study, we apply the Monte Carlo simulation to deal with the stochastic transportation time in the network and propose a data-driven approach that combines historical data and the dataset generated by the data mining algorithm to accelerate the search for the nondominated solution in the simulation. To validate the effectiveness of the proposed Data-Driven Multi-Objective Simulation Ant Colony (DD-MSAC) algorithm, we compare the optimum-seeking performance and the running time consumption of the Nondominated Sorting Genetic Algorithm-II (NSGA-II) and the Multi-Objective Simulation Ant Colony (MSAC) algorithm. Then, the MSAC algorithm is adopted as the benchmark for the comparison study on the solving performance of the proposed DD-MSAC algorithm. We conducted 30 times simulation run under different network scales in our numerical examples to show that the DD-MSAC algorithm can be equally effective as the non-data-driven MSAC algorithm in finding a nondominated solution as the average error does not exceed 5%. Meanwhile, we analyze the impact of different data-driven approaches, including data pool and support vector machine, on the solution quality and the running time. Finally, we use an example of China’s Belt Road Initiative to verify the effectiveness of the proposed algorithm.

Funder

Chongqing Social Science Planning Fund

Chongqing Municipal Transportation Bureau

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3