A VLT-ULTRACAM study of the fast optical quasi-periodic oscillations in the polar V834 Centauri

Author:

Mouchet M.,Bonnet-Bidaud J.-M.,Van Box Som L.,Falize E.,Buckley D. A. H.,Breytenbach H.,Ashley R. P.,Marsh T. R.,Dhillon V. S.

Abstract

Quasi-periodic oscillations (QPOs) of a few seconds have been detected in some polars, the synchronised subclass of cataclysmic systems containing a strongly magnetised white dwarf which accretes matter from a red dwarf companion. The QPOs are thought to be related to instabilities of a shock formed in the accretion column, close to the white dwarf photosphere above the impact region. We present optical observations of the polar V834 Centauri performed with the fast ULTRACAM camera mounted on the ESO-VLT simultaneously in three filters (u′, He ii λ4686, r′) to study these oscillations and characterise their properties along the orbit when the column is seen at different viewing angles. Fast Fourier transforms and wavelet analysis have been performed and the mean frequency, rms amplitude, and coherence of the QPOs are derived; a detailed inspection of individual pulses has also been performed. The observations confirm the probable ubiquity of the QPOs for this source at all epochs when the source is in a high state, with observed mean amplitude of 2.1% (r′), 1.5% (He ii), and 0.6% (u′). The QPOs are present in the r′ filter at all phases of the orbital cycle, with a higher relative amplitude around the maximum of the light curve. They are also detected in the He ii and u′ filters but at a lower level. Trains of oscillations are clearly observed in the r′ light curve and can be mimicked by a superposition of damped sinusoids with various parameters. The QPO energy distribution is comparable to that of the cyclotron flux, consistent for the r′ and He ii filters but requiring a significant dilution in the u′ filter. New 1D hydrodynamical simulations of shock instabilities, adapted to the physical parameters of V834 Cen, can account for the optical QPO amplitude and X-ray upper limit assuming a cross section of the accretion column in the range ~(4 − 5) × 1014 cm2. However, the predicted frequency is larger than the observed one by an order of magnitude. This shortcoming indicates that the QPO generation is more complex than that produced in a homogeneous column and calls for a more realistic 3D treatment of the accretion flow in future modelling.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference47 articles.

1. The AM Herculis-type binary E1405 - 451

2. Barrett, P., Singh, K. P., & Mitchell, S. 1999, in Annapolis Workshop on Magnetic Cataclysmic Variables, eds. C. Hellier, & K. Mukai, ASP Conf. Ser., 157, 180

3. A Ginga hard X-ray search for 1-3 s quasi-periodic oscillations in AM Herculis systems

4. Bonnet-Bidaud, J. M., Beuermann, K., Charles, P. A., et al. 1985, in Recent Results on Cataclysmic Variables. The Importance of IUE and Exosat Results on Cataclysmic Variables and Low-Mass X-Ray Binaries, ed. W. R. Burke, ESA SP, 236, 155

5. Quasi-periodic oscillations in accreting magnetic white dwarfs

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3