Planck intermediate results

Author:

,Akrami Y.,Ashdown M.,Aumont J.,Baccigalupi C.,Ballardini M.,Banday A. J.,Barreiro R. B.,Bartolo N.,Basak S.,Benabed K.,Bernard J.-P.,Bersanelli M.,Bielewicz P.,Bonavera L.,Bond J. R.,Borrill J.,Bouchet F. R.,Boulanger F.,Bucher M.,Burigana C.,Butler R. C.,Calabrese E.,Cardoso J.-F.,Carron J.,Chiang H. C.,Colombo L. P. L.,Comis B.,Couchot F.,Coulais A.,Crill B. P.,Curto A.,Cuttaia F.,de Bernardis P.,de Rosa A.,de Zotti G.,Delabrouille J.,Di Valentino E.,Dickinson C.,Diego J. M.,Doré O.,Ducout A.,Dupac X.,Elsner F.,Enßlin T. A.,Eriksen H. K.,Falgarone E.,Fantaye Y.,Finelli F.,Frailis M.,Fraisse A. A.,Franceschi E.,Frolov A.,Galeotta S.,Galli S.,Ganga K.,Génova-Santos R. T.,Gerbino M.,González-Nuevo J.,Górski K. M.,Gruppuso A.,Gudmundsson J. E.,Hansen F. K.,Helou G.,Henrot-Versillé S.,Herranz D.,Hivon E.,Jaffe A. H.,Jones W. C.,Keihänen E.,Keskitalo R.,Kiiveri K.,Kim J.,Kisner T. S.,Krachmalnicoff N.,Kunz M.,Kurki-Suonio H.,Lagache G.,Lamarre J.-M.,Lasenby A.,Lattanzi M.,Lawrence C. R.,Le Jeune M.,Lellouch E.,Levrier F.,Liguori M.,Lilje P. B.,Lindholm V.,López-Caniego M.,Ma Y.-Z.,Macías-Pérez J. F.,Maggio G.,Maino D.,Mandolesi N.,Maris M.,Martin P. G.,Martínez-González E.,Matarrese S.,Mauri N.,McEwen J. D.,Melchiorri A.,Mennella A.,Migliaccio M.,Miville-Deschênes M.-A.,Molinari D.,Moneti A.,Montier L.,Moreno R.,Morgante G.,Natoli P.,Oxborrow C. A.,Paoletti D.,Partridge B.,Patanchon G.,Patrizii L.,Perdereau O.,Piacentini F.,Plaszczynski S.,Polenta G.,Rachen J. P.,Racine B.,Reinecke M.,Remazeilles M.,Renzi A.,Rocha G.,Romelli E.,Rosset C.,Roudier G.,Rubiño-Martín J. A.,Ruiz-Granados B.,Salvati L.,Sandri M.,Savelainen M.,Scott D.,Sirri G.,Spencer L. D.,Suur-Uski A.-S.,Tauber J. A.,Tavagnacco D.,Tenti M.,Toffolatti L.,Tomasi M.,Tristram M.,Trombetti T.,Valiviita J.,Van Tent F.,Vielva P.,Villa F.,Wehus I. K.,Zacchei A.

Abstract

Measurements of flux density are described for five planets, Mars, Jupiter, Saturn, Uranus, and Neptune, across the six Planck High Frequency Instrument frequency bands (100–857 GHz) and these are then compared with models and existing data. In our analysis, we have also included estimates of the brightness of Jupiter and Saturn at the three frequencies of the Planck Low Frequency Instrument (30, 44, and 70 GHz). The results provide constraints on the intrinsic brightness and the brightness time-variability of these planets. The majority of the planet flux density estimates are limited by systematic errors, but still yield better than 1% measurements in many cases. Applying data from Planck HFI, the Wilkinson Microwave Anisotropy Probe (WMAP), and the Atacama Cosmology Telescope (ACT) to a model that incorporates contributions from Saturn’s rings to the planet’s total flux density suggests a best fit value for the spectral index of Saturn’s ring system of βring = 2.30 ± 0.03 over the 30–1000 GHz frequency range. Estimates of the polarization amplitude of the planets have also been made in the four bands that have polarization-sensitive detectors (100–353 GHz); this analysis provides a 95% confidence level upper limit on Mars’s polarization of 1.8, 1.7, 1.2, and 1.7% at 100, 143, 217, and 353 GHz, respectively. The average ratio between the Planck-HFI measurements and the adopted model predictions for all five planets (excluding Jupiter observations for 353 GHz) is 1.004, 1.002, 1.021, and 1.033 for 100, 143, 217, and 353 GHz, respectively. Model predictions for planet thermodynamic temperatures are therefore consistent with the absolute calibration of Planck-HFI detectors at about the three-percent level. We compare our measurements with published results from recent cosmic microwave background experiments. In particular, we observe that the flux densities measured by Planck HFI and WMAP agree to within 2%. These results allow experiments operating in the mm-wavelength range to cross-calibrate against Planck and improve models of radiative transport used in planetary science.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3