Abstract
The projection factor (p-factor) is an essential component of the classical Baade-Wesselink (BW) technique, which is commonly used to determine the distances to pulsating stars. It is a multiplicative parameter used to convert radial velocities into pulsational velocities. As the BW distances are linearly proportional to the p-factor, its accurate calibration for Cepheids is of critical importance for the reliability of their distance scale. We focus on the observational determination of the p-factor of the long-period Cepheid RS Pup (P = 41.5 days). This star is particularly important as this is one of the brightest Cepheids in the Galaxy and an analog of the Cepheids used to determine extragalactic distances. An accurate distance of 1910 ± 80 pc (± 4.2%) has recently been determined for RS Pup using the light echoes propagating in its circumstellar nebula. We combine this distance with new VLTI/PIONIER interferometric angular diameters, photometry, and radial velocities to derive the p-factor of RS Pup using the code Spectro-Photo-Interferometry of Pulsating Stars (SPIPS). We obtain p = 1.250 ± 0.064 ( ± 5.1%), defined for cross-correlation radial velocities. Together with measurements from the literature, the p-factor of RS Pup confirms the good agreement of a constant \hbox{$\overline{p}=\meanp \pm \meanperr\ (\pm \meanprelerr\%)$} model with the observations. We conclude that the p-factor of Cepheids is constant or mildly variable over a broad range of periods (3.7 to 41.5 days).
Funder
Agence Nationale de la Recherche
ECOS-Sud/CONICYT
BASAL Centro de Astrofisica y Tecnologias Afines
Iniciativa Cientifica Milenio del Ministerio de Economia, Fomento y Turismo de Chile
Programme National de Physique Stellaire, CNRS/INSU, France
ESTEC
European Research Council
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献