TESS asteroseismology of the known planet host star λ2 Fornacis

Author:

Nielsen M. B.ORCID,Ball W. H.,Standing M. R.,Triaud A. H. M. J.,Buzasi D.,Carboneau L.ORCID,Stassun K. G.ORCID,Kane S. R.ORCID,Chaplin W. J.,Bellinger E. P.ORCID,Mosser B.ORCID,Roxburgh I. W.,Çelik Orhan Z.ORCID,Yıldız M.ORCID,Örtel S.,Vrard M.,Mazumdar A.ORCID,Ranadive P.ORCID,Deal M.ORCID,Davies G. R.,Campante T. L.,García R. A.ORCID,Mathur S.ORCID,González-Cuesta L.ORCID,Serenelli A.ORCID

Abstract

Context. The Transiting Exoplanet Survey Satellite (TESS) is observing bright known planet-host stars across almost the entire sky. These stars have been subject to extensive ground-based observations, providing a large number of radial velocity measurements. Aims. The objective of this work is to use the new TESS photometric observations to characterize the star λ2 Fornacis, and following this to update the parameters of the orbiting planet λ2 For b. Methods. We measured the frequencies of the p-mode oscillations in λ2 For, and in combination with non-seismic parameters estimated the stellar fundamental properties using stellar models. Using the revised stellar properties and a time series of archival radial velocities from the UCLES, HIRES and HARPS instruments spanning almost 20 years, we refit the orbit of λ2 For b and searched the residual radial velocities for remaining variability. Results. We find that λ2 For has a mass of 1.16 ± 0.03 M and a radius of 1.63 ± 0.04 R, with an age of 6.3 ± 0.9 Gyr. This and the updated radial velocity measurements suggest a mass of λ2 For b of 16.8−1.3+1.2 M, which is ∼5M less than literature estimates. We also detect an additional periodicity at 33 days in the radial velocity measurements, which is likely due to the rotation of the host star. Conclusions. While previous literature estimates of the properties of λ2 For are ambiguous, the asteroseismic measurements place the star firmly at the early stage of its subgiant evolutionary phase. Typically only short time series of photometric data are available from TESS, but by using asteroseismology it is still possible to provide tight constraints on the properties of bright stars that until now have only been observed from the ground. This prompts a reexamination of archival radial velocity data that have been accumulated in the past few decades in order to update the characteristics of the planet hosting systems observed by TESS for which asteroseismology is possible.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3