First observations and magnitude measurement of Starlink’s Darksat

Author:

Tregloan-Reed J.,Otarola A.,Ortiz E.,Molina V.,Anais J.,González R.,Colque J. P.,Unda-Sanzana E.

Abstract

Aims. We measured the Sloan g′ magnitudes of the Starlink’s STARLINK-1130 (Darksat) and 1113 low Earth orbit (LEO) communication satellites to determine the effectiveness of the Darksat darkening treatment at 475.4 nm. Methods. Two observations of the Starlink’s Darksat LEO communication satellite were conducted on 2020/02/08 and 2020/03/06 using Sloan r′ and g′ filters, respectively. A second satellite, STARLINK-1113, was observed on 2020/03/06 using a Sloan g′ filter. The initial observation on 2020/02/08 was a test observation conducted when Darksat was still in the process of manoeuvring to its nominal orbit and orientation. Based on the successful test observation, the first main observation took place on 2020/03/06, along with an observation of the second Starlink satellite. Results. The calibration, image processing, and analysis of the Darksat Sloan g′ image gives an estimated Sloan g′ magnitude of 7.46 ± 0.04 at a range of 976.50 km. For STARLINK-1113, an estimated Sloan g′ magnitude of 6.59 ± 0.05 at a range of 941.62 km was found. When scaled to a range of 550 km and corrected for the solar and observer phase angles, a reduction by a factor of two is seen in the reflected solar flux between Darksat and STARLINK-1113. Conclusions. The data and results presented in this work demonstrate that the special darkening coating used by Starlink for Darksat has darkened the Sloan g’ magnitude by 0.77 ± 0.05 mag when the range is equal to a nominal orbital height (550 km). This result will serve members of the astronomical community who are actively modelling the satellite mega-constellations to ascertain their actual impact on both amateur and professional astronomical observations. Both concurrent and subsequent observations are planned to cover the full optical and NIR spectrum using an ensemble of instruments, telescopes, and observatories.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference13 articles.

1. Allen C. W. 1973, Astrophysical Quantities (London: University of London, Athlone Press)

2. The Sloan Digital Sky Survey Photometric System

3. Gallozzi S., Paris D., Maris M., Scardia M., & Dubois D. 2020, ArXiv e-prints [arXiv:2003.05472]

4. Hainaut O. R., & Williams A. P. 2020, A&A, in press, https://doi.org/10.1051/0004-6361/202037501

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3