Observed sizes of planet-forming disks trace viscous spreading

Author:

Trapman L.ORCID,Rosotti G.ORCID,Bosman A. D.ORCID,Hogerheijde M. R.ORCID,van Dishoeck E. F.

Abstract

Context. The evolution of protoplanetary disks is dominated by the conservation of angular momentum, where the accretion of material onto the central star is fed by the viscous expansion of the outer disk or by disk winds extracting angular momentum without changing the disk size. Studying the time evolution of disk sizes therefore allows us to distinguish between viscous stresses or disk winds as the main mechanism of disk evolution. Observationally, estimates of the size of the gaseous disk are based on the extent of CO submillimeter rotational emission, which is also affected by the changing physical and chemical conditions in the disk during the evolution. Aims. We study how the gas outer radius measured from the extent of the CO emission changes with time in a viscously expanding disk. We also investigate to what degree this observable gas outer radius is a suitable tracer of viscous spreading and whether current observations are consistent with viscous evolution. Methods. For a set of observationally informed initial conditions we calculated the viscously evolved density structure at several disk ages and used the thermochemical code DALI to compute synthetic emission maps, from which we measured gas outer radii in a similar fashion as observations. Results. The gas outer radii (RCO, 90%) measured from our models match the expectations of a viscously spreading disk: RCO, 90% increases with time and, for a given time, RCO, 90% is larger for a disk with a higher viscosity αvisc. However, in the extreme case in which the disk mass is low (Mdisk ≤ 10−4 M) and αvisc is high (≥10−2), RCO, 90% instead decreases with time as a result of CO photodissociation in the outer disk. For most disk ages, RCO, 90% is up to ~12× larger than the characteristic size Rc of the disk, and RCO, 90%/Rc is largest for the most massive disk. As a result of this difference, a simple conversion of RCO, 90% to αvisc overestimates the true αvisc of the disk by up to an order of magnitude. Based on our models, we find that most observed gas outer radii in Lupus can be explained using viscously evolving disks that start out small (Rc(t = 0) ≃ 10 AU) and have a low viscosity (αvisc = 10−4−10−3). Conclusions. Current observations are consistent with viscous evolution, but expanding the sample of observed gas disk sizes to star-forming regions, both younger and older, would better constrain the importance of viscous spreading during disk evolution.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference87 articles.

1. Photoevaporation of Circumstellar Disks Due to External Far‐Ultraviolet Radiation in Stellar Aggregates

2. X-shooter spectroscopy of young stellar objects

3. X-shooter spectroscopy of young stellar objects in Lupus

4. Alexander R., Pascucci I., Andrews S., Armitage P., & Cieza L. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson: University of Arizona Press), 475

5. Scaling Relations Associated with Millimeter Continuum Sizes in Protoplanetary Disks

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3