Neutron star matter equation of state including d*-hexaquark degrees of freedom

Author:

Mantziris A.,Pastore A.ORCID,Vidaña I.,Watts D. P.,Bashkanov M.,Romero A. M.

Abstract

We present the extension of a previous study where, assuming a simple free bosonic gas supplemented with a relativistic mean-field model to describe the pure nucleonic part of the equation of state, we studied the consequences that the first non-trivial hexaquark d*(2380) could have on the properties of neutron stars. Compared to that exploratory work, we employ a standard non-linear Walecka model including additional terms that describe the interaction of the d*(2380) di-baryon with the other particles of the system through the exchange of σ- and ω-meson fields. Our results show that the presence of the d*(2380) leads to maximum masses compatible with recent observations of ∼2 M millisecond pulsars if the interaction of the d*(2380) is slightly repulsive or the d*(2380) does not interact at all. An attractive interaction makes the equation of state too soft to be able to support a 2 M neutron star whereas an extremely repulsive one induces the collapse of the neutron star into a black hole as soon as the d*(2380) appears.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperons in neutron stars: studies of hyperon spectroscopy and the hyperon–nucleon interaction with the K-long Facility;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-06-24

2. Dibaryons and where to find them;Journal of Physics G: Nuclear and Particle Physics;2024-03-07

3. Destabilization of high-mass neutron stars by the emergence of d* -hexaquarks;Physical Review D;2024-01-03

4. 3D Modeling of Mine Protection Complex Steel Structure Based on BIM Technology;Journal of Applied Mathematics;2023-03-06

5. Systematic analysis of inner crust composition using the extended Thomas-Fermi approximation with pairing correlations;Physical Review C;2021-03-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3