Abstract
Context. Composition, mass, and trajectory parameters of meteors can be derived by combining observations with the meteor physics equations. The fidelity of these equations, which rely on heuristic coefficients, significantly affects the accuracy of the properties inferred.
Aims. Our objective is to present a methodology that can be used to compute the luminosity of meteor entry based on detailed flow simulations in the continuum regime.
Methods. The methodology consists in solving the Navier–Stokes equations using state-of-the-art physico-chemical models for hypersonic flows. It includes accurate boundary conditions to simulate the surface evaporation of the molten material and coupled flow-radiation effects. Such detailed simulations allow for the calculation of heat-transfer coefficients and luminous efficiency, which can be incorporated into the meteor physics equations. Finally, we integrate the radiative transfer equation over a line of sight from the ground to the meteor to derive the luminosity magnitude.
Results. We use the developed methodology to simulate the Lost City bolide and to derive the luminosity magnitude, obtaining good agreement between numerical results and observations. The computed color index is more prominent than the observations. This is attributed to a lack of refractory elements such as Ca in the modeled flow that might originate from the vaporization of droplets in the trail, a phenomenon currently not included in the model.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献