Evolution of spheroidal dust in electrically active sub-stellar atmospheres

Author:

Stark C. R.ORCID,Diver D. A.ORCID

Abstract

Context. Understanding the source of sub-stellar polarimetric observations in the optical and near-infrared is key to characterizing sub-stellar objects and developing potential diagnostics for determining properties of their atmospheres. Differential scattering from a population of aligned, non-spherical dust grains is a potential source of polarization that could be used to determine geometric properties of the dust clouds. Aims. This paper addresses the problem of the spheroidal growth of dust grains in electrically activated sub-stellar atmospheres. It presents the novel application of a mechanism whereby non-spherical, elongated dust grains can be grown via plasma deposition as a consequence of the surface electric field effects of charged dust grains. Methods. We numerically solve the differential equations governing the spheroidal growth of charged dust grains via plasma deposition as a result of surface electric field effects in order to determine how the dust eccentricity and the dust particle eccentricity distribution function evolve with time. From these results, we determine the effect of spheroidal dust on the observed linear polarization. Results. Numerical solutions show that e ≈ 0.94 defines a watershed eccentricity, where the eccentricity of grains with an initial eccentricity less than (greater than) this value decreases (increases) and spherical (spheroidal) growth occurs. This produces a characteristic bimodal eccentricity distribution function yielding a fractional change in the observed linear polarization of up to ≈0.1 corresponding to dust grains of maximal eccentricity at wavelengths of ≈1 μm, consistent with the near infrared observational window. Order of magnitude calculations indicate that a population of aligned, spheroidal dust grains can produce degrees of polarization P ≈ 𝒪(10−2 − 1%) consistent with observed polarization signatures. Conclusions. The results presented here are relevant to the growth of non-spherical, irregularly shaped dust grains of general geometry where non-uniform surface electric field effects of charged dust grains are significant. The model described in this paper may also be applicable to polarization from galactic dust and dust growth in magnetically confined plasmas.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3