Fragmentation of star-forming filaments in the X-shaped nebula of the California molecular cloud

Author:

Zhang Guo-Yin,André Ph.,Men’shchikov A.,Wang Ke

Abstract

Context. Dense molecular filaments are central to the star formation process, but the detailed manner in which they fragment into prestellar cores is not well understood yet. Aims. Here, we investigate the fragmentation properties and dynamical state of several star-forming filaments in the X-shaped nebula region of the California molecular cloud in an effort to shed some light on this issue. Methods. We used multiwavelength far-infrared images from Herschel as well as the getsources and getfilaments extraction methods to identify dense cores and filaments in the region and derive their basic properties. We also used a map of 13CO(2−1) emission from the Arizona 10m Submillimeter Telescope (SMT) to constrain the dynamical state of the filaments. Results. We identified ten filaments with aspect ratios of AR > 4 and column density contrasts of C > 0.5, as well as 57 dense cores, including two protostellar cores, 20 robust prestellar cores, 11 candidate prestellar cores, and 24 unbound starless cores. All ten filaments have roughly the same deconvolved full width at half maximum (FWHM), with a median value of 0.12 ± 0.03 pc, which is independent of their column densities ranging from <1021 cm−2 to >1022 cm−2. Two star-forming filaments (# 8 and # 10) stand out since they harbor quasi-periodic chains of dense cores with a typical projected core spacing of ~0.15 pc. These two filaments have thermally supercritical line masses and are not static. Filament 8 exhibits a prominent transverse velocity gradient, suggesting that it is accreting gas from the parent cloud gas reservoir at an estimated rate of ~40 ± 10 M Myr−1 pc−1. Filament 10 includes two embedded protostars with outflows and it is likely at a somewhat later evolutionary stage than filament 8. In both cases, the observed (projected) core spacing is similar to the filament width and significantly shorter than the canonical separation of ~4 times the filament width predicted by classical cylinder fragmentation theory. It is unlikely that projection effects can explain this discrepancy. We suggest that the continuous accretion of gas onto the two star-forming filaments, as well as the geometrical bending of the filaments, may account for the observed core spacing. Conclusions. Our findings suggest that the characteristic fragmentation lengthscale of molecular filaments is quite sensitive to external perturbations from the parent cloud, such as the gravitational accretion of ambient material.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference87 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3