Radio and high-energy emission of pulsars revealed by general relativity

Author:

Giraud Q.,Pétri J.

Abstract

Context. According to current pulsar emission models, photons are produced within their magnetosphere and current sheet, along their separatrix, which is located inside and outside the light cylinder. Radio emission is favoured in the vicinity of the polar caps, whereas the high-energy counterpart is presumably enhanced in regions around the light cylinder, whether this is the magnetosphere and/or the wind. However, the gravitational effect on their light curves and spectral properties has only been sparsely researched. Aims. We present a method for simulating the influence that the gravitational field of the neutron star has on its emission properties according to the solution of a rotating dipole evolving in a slowly rotating neutron star metric described by general relativity. Methods. We numerically computed photon trajectories assuming a background Schwarzschild metric, applying our method to neutron star radiation mechanisms such as thermal emission from hot spots and non-thermal magnetospheric emission by curvature radiation. We detail the general-relativistic effects onto observations made by a distant observer. Results. Sky maps are computed using the vacuum electromagnetic field of a general-relativistic rotating dipole, extending previous works obtained for the Deutsch solution. We compare Newtonian results to their general-relativistic counterpart. For magnetospheric emission, we show that aberration and curvature of photon trajectories as well as Shapiro time delay significantly affect the phase delay between radio and high-energy light curves, although the characteristic pulse profile that defines pulsar emission is kept.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical expressions for pulse profile of neutron stars in plasma environments;The European Physical Journal C;2023-02-21

2. Superdense beaming of axion dark matter in the vicinity of the light cylinder of pulsars;Journal of Cosmology and Astroparticle Physics;2022-08-01

3. Trajectories and radiation of charged particles in the pulsar magnetosphere;Monthly Notices of the Royal Astronomical Society;2022-04-07

4. Frequency-resolved radio and high-energy emission of pulsars;Astronomy & Astrophysics;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3