Submillimetre water masers at 437, 439, 471, and 474 GHz towards evolved stars

Author:

Bergman P.,Humphreys E. M. L.

Abstract

Aims. Here we aim to characterise submillimetre water masers at 437, 439, 471, and 474 GHz towards a sample of evolved stars. Methods. We used the Atacama Pathfinder Experiment (APEX1) to observe submillimetre water transitions and the CO (4–3) line towards 11 evolved stars. The sample included semi-regular and Mira variables, plus a red supergiant star. We performed radiative transfer modelling for the water masers. We also used the CO observations to determine mass loss rates for the stars. Results. From the sample of 11 evolved stars, 7 display one or more of the masers at 437, 439, 471, and 474 GHz. We therefore find that these masers are common in evolved star circumstellar envelopes. The fact that the maser lines are detected near the stellar velocity indicates that they are likely to originate from the inner circumstellar envelopes of our targets. We tentatively link the presence of masers to the degree of variability of the target star, that is, masers are more likely to be present in Mira variables than in semi-regular variables. We suggest that this indicates the importance of strong shocks in creating the necessary conditions for the masers. Typically, the 437 GHz line is the strongest maser line observed among those studied here. We cannot reproduce the above finding in our radiative transfer models. In general, we find that maser emission is very sensitive to dust temperature in the lines studied here. To produce strong maser emission, the dust temperature must be significantly lower than the gas kinetic temperature. In addition to running grids of models in order to determine the optimum physical conditions for strong masers in these lines, we performed smooth wind modelling for which we cannot reproduce the observed line shapes. This also suggests that the masers must originate predominantly from the inner envelopes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3