The multi-phase ISM in the nearby composite AGN-SB galaxy NGC 4945: large-scale (parsecs) mechanical heating

Author:

Bellocchi E.ORCID,Martín-Pintado J.,Güsten R.,Requena–Torres M. A.,Harris A.,van der Werf P. P.,Israel F. P.,Weiss A.,Kramer C.,García-Burillo S.,Stutzki J.

Abstract

Context. Understanding the dominant heating mechanism in the nuclei of galaxies is crucial to understanding star formation in starbursts (SBs), active galactic nuclei (AGN) phenomena, and the relationship between star formation and AGN activity in galaxies. Analysis of the carbon monoxide (12CO) rotational ladder versus the infrared continuum emission (hereafter, 12CO/IR) in galaxies with different types of activity reveals important differences between them. Aims. We aim to carry out a comprehensive study of the nearby composite AGN-SB galaxy, NGC 4945, using spectroscopic and photometric data from the Herschel satellite. In particular, we want to characterize the thermal structure in this galaxy using a multi-transition analysis of the spatial distribution of the 12CO emission at different spatial scales. We also want to establish the dominant heating mechanism at work in the inner region of this object at smaller spatial scales (≲200 pc). Methods. We present far-infrared (FIR) and sub-millimeter (sub-mm) 12CO line maps and single spectra (from Jup = 3 to 20) using the Heterodyne Instrument for the Far Infrared (HIFI), the Photoconductor Array Camera and Spectrometer (PACS), and the Spectral and Photometric Imaging REceiver (SPIRE) onboard Herschel, and the Atacama Pathfinder EXperiment (APEX). We combined the 12CO/IR flux ratios and the local thermodynamic equilibrium (LTE) analysis of the 12CO images to derive the thermal structure of the interstellar medium (ISM) for spatial scales raging from ≲200 pc to 2 kpc. In addition, we also present single spectra of low- (12CO, 13CO and [CI]) and high-density (HCN, HNC, HCO+, CS and CH) molecular gas tracers obtained with APEX and HIFI applying LTE and non-LTE (NLTE) analyses. Furthermore, the spectral energy distribution of the continuum emission from the FIR to sub-mm wavelengths is also presented. Results. From the NLTE analysis of the low- and high-density tracers, we derive gas volume densities (103–106 cm−3) for NGC 4945 that are similar to those found in other galaxies with different types of activity. From the 12CO analysis we find a clear trend in the distribution of the derived temperatures and the 12CO/IR ratios. It is remarkable that at intermediate scales (360 pc–1 kpc, or 19″–57″) we see large temperatures in the direction of the X-ray outflow while at smaller scales (≲200 pc–360 pc, or ∼9″–19″), the highest temperature, derived from the high-J lines, is not found toward the nucleus but toward the galaxy plane. The thermal structure derived from the 12CO multi-transition analysis suggests that mechanical heating, like shocks or turbulence, dominates the heating of the ISM in the nucleus of NGC4945 located beyond 100 pc (≳5″) from the center of the galaxy. This result is further supported by published models, which are able to reproduce the emission observed at high-J (PACS) 12CO transitions when mechanical heating mechanisms are included. Shocks and/or turbulence are likely produced by the barred potential and the outflow observed in X–rays.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling molecular clouds and CO excitation in AGN-host galaxies;Monthly Notices of the Royal Astronomical Society;2023-11-27

2. PDFchem: A new fast method to determine ISM properties and infer environmental parameters using probability distributions;Monthly Notices of the Royal Astronomical Society;2022-11-29

3. Positive feedback, quenching, and sequential super star cluster (SSC) formation in NGC 4945;Monthly Notices of the Royal Astronomical Society: Letters;2022-11-24

4. Photodissociation and X-Ray-Dominated Regions;Annual Review of Astronomy and Astrophysics;2022-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3