GASP

Author:

Ramatsoku M.,Serra P.,Poggianti B. M.,Moretti A.,Gullieuszik M.,Bettoni D.,Deb T.,Franchetto A.,van Gorkom J. H.,Jaffé Y.,Tonnesen S.,Verheijen M. A. W.,Vulcani B.,Andati L. A. L.,de Blok E.,Józsa G. I. G.,Kamphuis P.,Kleiner D.,Maccagni F. M.,Makhathini S.,Molnár D. Cs.,Ramaila A. J. T.,Smirnov O.,Thorat K.

Abstract

We present atomic hydrogen (H I) observations with the Jansky Very Large Array of one of the jellyfish galaxies in the GAs Stripping Phenomena sample, JO201. This massive galaxy (M* = 3.5 × 1010M) is falling along the line-of-sight towards the centre of a rich cluster (M200 ∼ 1.6 × 1015M, σcl ∼ 982 ± 55 km s−1) at a high velocity ≥3363 km s−1. Its Hα emission shows a ∼40 kpc tail, which is closely confined to its stellar disc and a ∼100 kpc tail extending further out. We find that H I emission only coincides with the shorter clumpy Hα tail, while no H I emission is detected along the ∼100 kpc Hα tail. In total, we measured an H I mass of MHI = 1.65 × 109M, which is about 60% lower than expected based on its stellar mass and stellar surface density. We compared JO201 to another jellyfish in the GASP sample, JO206 (of a similar mass but living in a ten times less massive cluster), and we find that they are similarly H I-deficient. Of the total H I mass in JO201, about 30% lies outside the galaxy disc in projection. This H I fraction is probably a lower limit since the velocity distribution shows that most of the H I is redshifted relative to the stellar disc and could be outside the disc. The global star formation rate (SFR) analysis of JO201 suggests an enhanced star formation for its observed H I content. The observed SFR would be expected if JO201 had ten times its current H I mass. The disc is the main contributor of the high star formation efficiency at a given H I gas density for both galaxies, but their tails also show higher star formation efficiencies compared to the outer regions of field galaxies. Generally, we find that JO201 and JO206 are similar based on their H I content, stellar mass, and star formation rate. This finding is unexpected considering their different environments. A toy model comparing the ram pressure of the intracluster medium (ICM) versus the restoring forces of these galaxies suggests that the ram pressure strength exerted on them could be comparable if we consider their 3D orbital velocities and radial distances relative to the clusters.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3