Photometric properties of lunar regolith revealed by the Yutu-2 rover

Author:

Lin Honglei,Yang Yazhou,Lin Yangting,Liu Yang,Wei Yong,Li Shuai,Hu Sen,Yang Wei,Wan Wenhui,Xu Rui,He Zhiping,Liu Xiaohui,Xing Yan,Yu Chengwu,Zou Yongliao

Abstract

Context. The surface composition of the Moon has mainly determined based on the visible and near-infrared spectra achieved from orbits and/or landing sites, and the spectroscopic analysis is based on photometric properties of the topmost lunar regolith. However, the lack of a ground truth for the photometric parameters of the undisturbed lunar surface has limited accurate applications of spectral observations. Aims. Here we report the photometric properties of the small-scale (i.e., centimeter level) undisturbed lunar regolith around the Chang’E-4 landing site, determined from a series of photometric experiments conducted by the rover Yutu-2. Methods. The simplified Hapke model was used to derive the photometric properties. The micro-topographic effect on the spectral measurements was corrected for the first time in the in situ photometric investigations on the Moon, which improves the accuracy of the derived photometric parameters. Results. The single-scattering albedo w and two parameters (b, c) of the Henyey-Greenstein phase function were derived, and they show a wavelength dependence. The regolith at the Chang’E-4 landing site exhibits strong forward scattering according to the retrieved c values, and the higher asymmetry parameter indicates that the regolith here is more strongly forward scattering than the Apollo lunar soil samples. The derived photometric parameters can serve as ground truth and can be used in the radiative transfer modeling analysis of the orbital remote-sensing data.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3