Disc light variability in the FUor star V646 Puppis as observed by TESS and from the ground

Author:

Siwak Michał,Ogłoza Waldemar,Krzesiński Jerzy

Abstract

Context. We investigate small-scale light variations in V646 Pup occurring on timescales of days, weeks, and years. Aims. We aim to investigate whether this variability is similar to that observed in FU Ori. Methods. We observed V646 Pup on six occasions at the SAAO and CTIO between 2013 and 2018 with Johnson and Sloan filters, typically using a one-day cadence maintained for two to four weeks. We also utilised the public-domain 1512-day-long ASAS-SN light curve and TESS photometry obtained in 2019 over 24.1 days with a 30 min cadence. New SAAO low-resolution spectra assist in updating major disc parameters, while the archival high-resolution Keck spectra are used to search for temporal changes in the disc rotational profiles. Results. The ground-based observations confirm the constantly decreasing brightness of V646 Pup at the rate of 0.018 mag yr−1. Precise i-band sensitive TESS data show that the slight, 0.005−0.01 mag, light variations imposed on this general trend do consist of a few independent wave trains of an apparently time-coherent nature. Assuming that this is typical situation, based on an analysis of colour–magnitude diagrams obtained for earlier epochs, we were able to make a preliminarily inference that the bulk of the light changes observed could be due to the rotation of disc photosphere inhomogeneities, arising between 10–12 R from the star. We do not exclude the possibility that these inhomogeneities could also manifest themselves in the rotational profiles of the disc, as obtained from the high-resolution spectra. Assuming Keplerian rotation of these inhomogeneities, we give a preliminary determination of the stellar mass at 0.7–0.9 M. Conclusions. Over certain weeks, at least, V646 Pup has shown time-coherent light variability pattern(s) that could be explained by the rotation of an inhomogeneous disc photosphere. These preliminary results are similar to those better established for FU Ori, which suggests a common driving mechanism(s).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3